Solutions of Homework 6: CS321, Fall 2010

Please show all steps in your work. Please be reminded that you should do your homework independently.

1. (10 points) Let $S_{0}(x)=c_{0} x+d_{0}$ be the linear polynomial defined on $\left[t_{0}, t_{1}\right]$, and $S_{2}(x)=c_{2} x+d_{2}$ the linear polynomial defined on $\left[t_{2}, t_{3}\right]$. We have

$$
S_{0}^{\prime}(x)=c_{0}, \quad S_{2}^{\prime}(x)=c_{2}
$$

and

$$
S_{0}^{\prime \prime}(x)=0, \quad S_{2}^{\prime \prime}(x)=0
$$

Assume the cubic spline polynomial defined on $\left[t_{1}, t_{2}\right]$ to be $S_{1}(x)=a_{1} x^{3}+b_{1} x^{2}+$ $c_{1} x+d_{1}$. It follows that

$$
S_{1}^{\prime}(x)=3 a_{1} x^{2}+2 b_{1} x+c_{1}
$$

and

$$
S_{1}^{\prime \prime}(x)=6 a_{1} x+2 b_{1}
$$

Since S, S^{\prime} and $S^{\prime \prime}$ have to be continuous on $\left[t_{0}, t_{3}\right]$, we must have

$$
S_{0}^{\prime \prime}\left(t_{1}\right)=S_{1}^{\prime \prime}\left(t_{1}\right), \quad S_{1}^{\prime \prime}\left(t_{2}\right)=S_{2}^{\prime \prime}\left(t_{2}\right)
$$

Hence

$$
\begin{equation*}
6 a_{1} t_{1}+2 b_{1}=0, \quad 6 a_{1} t_{2}+2 b_{1}=0 \tag{1}
\end{equation*}
$$

These two equations lead to

$$
6 a_{1}\left(t_{1}-t_{2}\right)=0
$$

Since $t_{1} \neq t_{2}$, we have $a_{1}=0$. From Eq. (1), we have $b_{1}=0$.
We can now conclude that $S_{1}(x)=c_{1} x+d_{1}$, so S is also a linear polynomial on $\left[t_{1}, t_{2}\right]$.
2. (10 points) Find a quadratic spline interpolant for these data

x	-1	0	$1 / 2$	1	2	$5 / 2$
y	2	1	0	1	2	3

Solution. Suppose the quadratic spline interpolant has the following form

$$
Q(x)= \begin{cases}Q_{0}(x), & x \in[-1,0] \\ Q_{1}(x), & x \in[0,1 / 2] \\ Q_{2}(x), & x \in[1 / 2,1] \\ Q_{3}(x), & x \in[1,2] \\ Q_{4}(x), & x \in[2,5 / 2]\end{cases}
$$

Define $z_{i}=Q_{i}^{\prime}\left(t_{i}\right)$, the following is the formula for Q_{i}

$$
Q_{i}(x)=\frac{z_{i+1}-z_{i}}{2\left(t_{i+1}-t_{i}\right)}\left(x-t_{i}\right)^{2}+z_{i}\left(x-t_{i}\right)+y_{i} .
$$

It follows that

$$
z_{i+1}=-z_{i}+2\left(\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}\right), \quad(0 \leq i \leq n-1) .
$$

By setting $z_{0}=0$, we can compute recursively,

$$
\begin{aligned}
& z_{1}=-0+2\left(\frac{1-2}{0-(-1)}\right)=-2 \\
& z_{2}=-(-2)+2\left(\frac{0-1}{1 / 2-0}\right)=-2 \\
& z_{3}=-(-2)+2\left(\frac{1-0}{1-1 / 2}\right)=6 \\
& z_{4}=-6+2\left(\frac{2-1}{2-1}\right)=-4 \\
& z_{5}=-(-4)+2\left(\frac{3-2}{5 / 2-2}\right)=8
\end{aligned}
$$

Hence, the quadratic spline interpolant is

$$
Q(x)= \begin{cases}Q_{0}(x)=-(x+1)^{2}+2, & x \in[-1,0] \\ Q_{1}(x)=-2 x+1, & x \in[0,1 / 2] \\ Q_{2}(x)=8(x-1 / 2)^{2}-2(x-1 / 2), & x \in[1 / 2,1] \\ Q_{3}(x)=-5(x-1)^{2}+6(x-1)+1, & x \in[1,2] \\ Q_{4}(x)=12(x-2)^{2}-4(x-2)+2, & x \in[2,5 / 2]\end{cases}
$$

3. (10 points) Determine if this function is a quadratic spline? Explain why or why not.

$$
Q(x)=\left\{\begin{array}{cc}
x & -\infty<x \leq 1 \\
x^{2} & 1 \leq x \leq 2 \\
4 & 2 \leq x<\infty
\end{array}\right.
$$

Solution. $Q(x)$ is not a quadratic spline. The domain of definition is $(-\infty, \infty)$ which is not finite. Furthermore,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} Q^{\prime}(x) & =\lim _{x \rightarrow 1^{-}} 1=1 \\
\lim _{x \rightarrow 1^{+}} Q^{\prime}(x) & =\lim _{x \rightarrow 1^{+}} 2 x=2
\end{aligned}
$$

It follows that $Q^{\prime}(x)$ is not continuous at $x=1$, which violates the definition of a quadratic spline.
4. (10 points) Determine the parameters a, b, c, d and e so that S is a natural cubic spline

$$
S(x)= \begin{cases}a+b(x-1)+c(x-1)^{2}+d(x-1)^{3} & x \in[0,1] \\ (x-1)^{3}+e x^{2}-1 & x \in[1,2]\end{cases}
$$

Solution. We first compute the derivatives of the individual functions

$$
\begin{aligned}
S_{0}^{\prime}(x) & =b+2 c(x-1)+3 d(x-1)^{2} \\
S_{0}^{\prime \prime}(x) & =2 c+6 d(x-1) \\
S_{1}^{\prime}(x) & =3(x-1)^{2}+2 e x \\
S_{1}^{\prime \prime}(x) & =6(x-1)+2 e
\end{aligned}
$$

We will make use of the continuity condition and the definition of the natural cubic spline.
From $S_{0}(1)=S_{1}(1)$, we have $a=c-1$.
From $S_{0}^{\prime}(1)=S_{1}^{\prime}(1)$, we have $b=2 e$.
From $S_{0}^{\prime \prime}(1)=S_{1}^{\prime \prime}(1)$, we have $2 c=2 e$, with $c=e$.
We also have

$$
\begin{gathered}
S_{0}^{\prime \prime}(0)=S^{\prime \prime}(2)=0 \\
2 c-6 d=0, \quad 2 e+6=0,
\end{gathered}
$$

we have $e=-3, c=-3$. Then $a=e-1=-4, b=2 e=-6$, and $d=c / 3=-1$.
5. (10 points) Determine the coefficients so that the function

$$
S(x)= \begin{cases}x^{2}+x^{3} & 0 \leq x \leq 1 \\ a+b x+c x^{2}+d x^{3} & 1 \leq x \leq 2\end{cases}
$$

is a cubic spline and has the property $S_{1}^{\prime \prime \prime}(x)=12$.
Solution. The derivatives are

$$
\begin{aligned}
S_{0}^{\prime}(x) & =2 x+3 x^{2} \\
S_{0}^{\prime \prime}(x) & =2+6 x \\
S_{1}^{\prime}(x) & =b+2 c x+3 d x^{2} \\
S_{1}^{\prime \prime}(x) & =2 c+6 d x \\
S_{1}^{\prime \prime \prime}(x) & =6 d
\end{aligned}
$$

Given the condition $S_{1}^{\prime \prime \prime}(x)=12$, we have $d=2$.
By continuity, we have $S_{0}^{\prime}(1)=S_{1}^{\prime}(1)$, which yields $5=b+2 c+3 d$.
From $S_{0}^{\prime \prime}(1)=S_{1}^{\prime \prime}(1)$, we have $8=2 c+6 d$.
We can solve the above two equations and get $c=-2$ and $b=3$.
From $S_{0}(1)=S_{1}(1)$, we have $2=a+b+c+d$, which gives us $a=-1$.

